Sunday, January 26, 2020

Literature Comparison: The Great Gatsby and The Motorcycle Diaries

Literature Comparison: The Great Gatsby and The Motorcycle Diaries What it makes us unique, is our way of being; no one is equal to other, all of us are different in every single way, and this is the most important characteristic of the human beings, but sometimes our way of being is not the right one. There exist people that spend their lives thinking in the welfare of the rest but in the other hand there exist people that spend their lives thinking only about themselves. Examples of these two types of people are shown in the books The Motorcycle Diaries by Ernesto Che Guevara and The Great Gatsby by F. Scott Fitzgerald. The great Gatsby is a book that is developed by the 1920s in the twentieth century and it is set in Long Islands North Shore, the book is narrated by Nick, a man who lived next to a mysterious and rich man called Jay Gatsby, they lived in the west coast of Long Island the less popular one. Jay Gatsby was a young rich man with a turbulent past, he was not have a position in the society that surrounded him and nobody knew how he had obtained his fortune. Some people believed that he had gained his fortune with the illegal sale of alcohol they believed that Gatsby was a bootlegger, Anyway and despite the great parties that he organized for the people of Long Island, he was a lonely man, because he only wanted to revive the past in order to be with the love of his life Daisy, who was also cousin of Nick; nevertheless, Daisy was married with the millionaire Tom Buchanan with who had a three years old daughter, Pam, they lived in the east coast of Long Island the most popular one, they wer e different from Gatsby because they were rich from birth, and they had a place in the society of those years. When Gatsby met Daisy he was a soldier of the militia and he was not rich, when he came back from the military service he discovered that Daisy was married with Tom and he decided to spend his life trying to have money in order to give to daisy what she deserved. When Gatsby was younger he had a mentor Dan Cody who helped him to make his fortune as a result Gatsby became rich but lonely, he lived in a big mansion and he gave parties whit the only reason that he hopped that some day Daisy come to one of his parties, actually one day Gatsby decided to invite to one of his parties to Nick his neighbor, when nick received the invitation he was surprised and he decided to go but he did not know that Gatsby invited him with the only reason that he knew that he was cousin of his love interest; Daisy, in the party Gatsby met Nick and they became friends but this friendship to Gatsb y had a purpose that was to join with Daisy again. Gatsby could achieve his purpose and he could join Daisy through Nick, and they started an affair and Gatsby could have what he wanted that was recover Daisy but when Tom discovered the affair of his wife with Gatsby, he asked them and Daisy recognized the affair but and she escaped with Gatsby in the car but in the road she hit Myrtle, the mistress of his husband, Tom, with the car and she killed her, and Gatsby in certainly way decided to do not tell anyone that Daisy killed Myrtle because he loved her but Daisy finally decided to stay with his husband because she was a woman of society and also she was very interesting in money and stability. Gatsby was not a bad man but he spent his life thinking in how to obtain what he wanted, he also did not think in the daughter of Daisy or what will happen with her if her mother escaped with him, he did not care about her and her husband he only was thinking in that he wanted to be with Dai sy again, in fact, he spent a lot of money in those extravagant parties in which he did not participate he only watched through the windows of the house looking to the people that were in his there with the hope that Daisy arrived to at least one of his outrageous parties, he was thinking all the time in how to obtain what he wanted in order to be happy no matter how. On the other hand the book The Motorcycle Diaries by Ernesto Che Guevara is a book of notes that Ernesto wrote during his trip with his friend Alberto Granada; Ernesto was a young medical student of medicine tired of school and excited to see the world and Alberto was working in a leprosy hospital in Argentinas Cà ³rdoba Province, and because of this he and his friend decided to do a trek through South America in an old motorcycle called the mighty one (la poderosa). The trip took eight months, the travel started in Cà ³rdoba and they left Argentina to go to Chile, they arrived in this country in Osorno passing through all the country to leave it to go to Perà º they leave this country and then they went to Colombia and finally Venezuela however they could not finish the trip in the motorcycle because they had to leave it in Santiago, Chile because the mighty one did not work any more. This book shows the trip of these two young men by the perspective of Ernesto, he wrote all the adventures and things that they did, and saw during their trek through South America. Guevaras political consciousness began to stir in this trip as he and Alberto moved into the mining country, Chile. They visited Chuquicamata copper mine, the worlds largest open-pit mine and the primary source of Chiles wealth in those years. It was run by U.S. mining monopolies and viewed by many as a symbol of foreign domination, and also to Ernesto was a symbol of human exploitation. During the trip Guevara also could apply his knowledge in medicine because he helped people that needed it for example in Chile he helped an old woman that was dying, he knew that he could not save the life of this woman, but he could stop the pain for a moment. Passages like this, change the mind of Ernesto because during the trip he could see that there existed and exist needed people not only in South America but all over the world. His political and social awakening has very much to do with this face-to-face contact with poverty, exploitation, illness, and suffering, [Internet reference: www.nationalgeographic.com] Guevara was a good man that changes his mind with this trip and after it he decided to star his career as a politician and help people, he decided this because of what the saw during this trip, for them all what they were seeing was in a certain way new because in Argentina they did not see aborigines for example, one thing that capture the attention of Ernesto and Alberto was the situation when they were traveling through Perà º and an Indian with his son who spoke Spanish approached them and asked them all about the land of Perà ³n, for the natives, these two young men came from a wonderful country where people could work and have a good pay for it, a developed country. Ernesto was very impressed by the old Inca civilization, riding trucks with the Natives and animals he felt a fraternity with the native people. Ernesto was a good man always worries for the rest, it is obvious why he was studying medicine, and it was during the trip that he made with his friend Alberto Granadas Jay Gatsby and Ernesto Guevara were two young men very different in what they wanted or their purposes in life, I think that these two men were not bad men specially Ernesto who spent his life in order to defend the rights of people. I believe that there not exist so many people that think like Ernesto but in the other hand there many people that think like the Great Gatsby, because most of people spend their lives thinking in how to obtain what they want, I think this is not bad but there are people that do not think in nothing else that how to get what they want and this people sometimes sin of selfish because they do not care if they make some damage to other people in order to have what they want to be happy. One phrase that represents what Ernesto felt after his trip is one that he wrote in his diary that says: I will be on the side of the people à ¢Ã¢â€š ¬Ã‚ ¦ I will take to the barricades and the trenches, screaming as one possessed, will stain my weapons with blood, and, mad with rage, will cut the throat of any vanquished foe I encounter,[Guevara, 2004 ] Many historians believe that this trip was the most important thing in the life of Ernesto that changes his mind to after be one of the most famous guerilla leaders in history, but nevertheless he was a person that was care about the rest all the time. On the other hand Jay Gatsby was not a bad person but he was always thinking how to obtain what he wanted that it was be with Daisy, in the sixth chapter of the book Nick narrated: He wanted nothing less of Daisy than that she should go to Tom and say: I never loved you. After she had obliterated four years with that sentence they could decide upon the more practical measures to be taken. One of them was that, after she was free, they were to go back to Louisville and be married from her house just as if it were five years agoà ¢Ã¢â€š ¬Ã‚ ¦ Im going to fix everything just the way it was before, he said, nodding determinedly. Shell see.[Fitzgerald 1925:54] He was so stubborn in be with her that he did not realize that he could damage other persons, for example Myrtle; she died because Daisy and Gatsby were running away from Tom, and even Gatsby died because of this. He died because of his obsession with Daisy because of his obsession in getting what he wanted. Gatsby was killed by Myrtles husband because Tom told him that Gatsby hit Myrtle with the car, also in Gatsbys funeral there were only three people; Nick, Gatsbys father and the person that was guiding the funeral although Gatsby always gave partied to everyone none of these people came to his funeral he was alone also when he died. I think that is not bad fight for what you want but sometimes be too obsessive with something is not good because everything can go wrong. Gatsby was so obsessive with Daisy and all what he wanted that he forgot to live a real life and make real friends. As a conclusion it could be say that not all the people think or have the same personality, all of us have different expectations in life, everybody want different things in order to be happy a clear example was shown here with these two characters Jay Gatsby and Ernesto Guevara; the first one thought that what he needed in order to be happy was be with his old love Daisy, Gatsby was doing what most of the people do that is look for his own happiness and the second character; Guevara, believed that what he really want to do in his life was fight for the rights of the people he was looking for the happiness of the rest, this is the biggest difference of these two young men nonetheless it could be said that none of these two was wrong Gatsby wanted what all want to be happy and Guevara was like few people are that is see and be worry about what the rest need or what are the rights of the rest, however both died Gatsby died because of his obsession with Daisy and Guevara died because he was always fighting for the rights of the people who needed, he was so obsessed with this that he nowadays is seen as one of the most iconic characters of the twentieth century, he was one of the most famous guerrilla leaders of history but despite that he died.

Friday, January 17, 2020

Spoilage, Rework, and Scrap

Managers have found that improved quality and intolerance for high spoilage have lowered overall costs and increased sales. 18-2Spoilage—units of production that do not meet the standards required by customers for good units and that are discarded or sold at reduced prices. Rework—units of production that do not meet the specifications required by customers but which are subsequently repaired and sold as good finished units. Scrap—residual material that results from manufacturing a product. It has low total sales value compared to the total sales value of the product. 8-3Yes. Normal spoilage is spoilage inherent in a particular production process that arises even under efficient operating conditions. Management decides the spoilage rate it considers normal depending on the production process. 18-4Abnormal spoilage is spoilage that is not inherent in a particular production process and would not arise under efficient operating conditions. Costs of abnormal spoilag e are â€Å"lost costs,† measures of inefficiency that should be written off directly as losses for the accounting period. 18-5Management effort can affect the spoilage rate.Many companies are relentlessly reducing their rates of normal spoilage, spurred on by competitors who, likewise, are continuously reducing costs. 18-6Normal spoilage typically is expressed as a percentage of good units passing the inspection point. Given actual spoiled units, we infer abnormal spoilage as follows: Abnormal spoilage = Actual spoilage – Normal spoilage 18-7Accounting for spoiled goods deals with cost assignment, rather than with cost incurrence, because the existence of spoiled goods does not involve any additional cost beyond the amount already incurred. 18-8Yes.Normal spoilage rates should be computed from the good output or from the normal input, not the total input. Normal spoilage is a given percentage of a certain output base. This base should never include abnormal spoilage, which is included in total input. Abnormal spoilage does not vary in direct proportion to units produced, and to include it would cause the normal spoilage count to fluctuate irregularly and not vary in direct proportion to the output base. 18-9Yes, the point of inspection is the key to the assignment of spoilage costs. Normal spoilage costs do not attach solely to units transferred out.Thus, if units in ending work in process have passed inspection, they should have normal spoilage costs added to them. 18-10No. If abnormal spoilage is detected at a different point in the production cycle than normal spoilage, then unit costs would differ. If, however normal and abnormal spoilage are detected at the same point in the production cycle, their unit costs would be the same. 18-11No. Spoilage may be considered a normal characteristic of a given production cycle. The costs of normal spoilage caused by a random malfunction of a machine would be charged as a part of the manufacturing overhe ad allocated to all jobs.Normal spoilage attributable to a specific job is charged to that job. 18-12 No. Unless there are special reasons for charging normal rework to jobs that contained the bad units, the costs of extra materials, labor, and so on are usually charged to manufacturing overhead and allocated to all jobs. 18-13Yes. Abnormal rework is a loss just like abnormal spoilage. By charging it to manufacturing overhead, the abnormal rework costs are spread over other jobs and also included in inventory to the extent a job is not complete. Abnormal rework is rework over and above what is expected during a period, and is recognized as a loss for that period. 8-14A company is justified in inventorying scrap when its estimated net realizable value is significant and the time between storing it and selling or reusing it is quite long. 18-15Company managements measure scrap to measure efficiency and to also control a tempting source of theft. Managements of companies that report hi gh levels of scrap focus attention on ways to reduce scrap and to use the scrap the company generates more profitably. Some companies, for example, might redesign products and processes to reduce scrap. Others may also examine if the scrap can be reused to save substantial input costs. 8-16(5–10 min. ) Normal and abnormal spoilage in units. 1. Total spoiled units12,000 Normal spoilage in units, 5% ( 132,000 6,600 Abnormal spoilage in units 5,400 2. Abnormal spoilage, 5,400 ( $10$ 54,000 Normal spoilage, 6,600 ( $10 66,000 Potential savings, 12,000 ( $10$120,000 Regardless of the targeted normal spoilage, abnormal spoilage is non-recurring and avoidable. The targeted normal spoilage rate is subject to change. Many companies have reduced their spoilage to almost zero, which would realize all potential savings.Of course, zero spoilage usually means higher-quality products, more customer satisfaction, more employee satisfaction, and various beneficial effects on nonmanufacturing (for example, purchasing) costs of direct materials. 18-17(20 min. )Weighted-average method, spoilage, equivalent units. Solution Exhibit 18-17 calculates equivalent units of work done to date for direct materials and conversion costs. SOLUTION EXHIBIT 18-17 Summarize Output in Physical Units and Compute Output in Equivalent Units; Weighted-Average Method of Process Costing with Spoilage, Gray Manufacturing Company for November 2006. |(Step 1) |(Step 2) | | | |Equivalent Units | | |Physical |Direct |Conversion | |Flow of Production |Units |Materials |Costs | |Work in process, beginning (given) |1,000 | | | |Started during current period |10,150a | | | |To account for |11,150 | | | |Good units completed and transferred out | | | | |during current period: |9,000 |9,000 |9,000 | |Normal spoilage* |100 | | | |100 ( 100%; 100 ( 100% | |100 |100 | |Abnormal spoilage†  |50 | | | |50 ( 100%; 50 (100% | |50 |50 | |Work in process, ending†¡ (given) |2,000 | | | |2,000 ( 100%; 2,000 ( 30% | |2,000 |600 | |Accounted for 11,150 | | | |Work done to date | |11,150 |9,750 | a From below, 11,150 total units are accounted for. Therefore, units started during current period must be = 11,150 – 1,000 = 10,150. *Degree of completion of normal spoilage in this department: direct materials, 100%; conversion costs, 100%. † Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100%; conversion costs, 30%. 18-18(20(25 min. Weighted-average method, assigning costs (continuation of 18-17). Solution Exhibit 18-18 calculates the costs per equivalent unit for direct materials and conversion costs, summarizes total costs to account for, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process. SOLUTION EXHIBIT 18-18 Compute Cost per Equivalent Unit, Summari ze Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process; Weighted-Average Method of Process Costing, Gray Manufacturing Company, November 2006. |Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning (given) |$ 2,533 |$ 1,423 |$ 1,110 | |Costs added in current period (given) |39,930 |12,180 |27,750 | |Costs incurred to date | |13,603 |28,860 | |Divided by equivalent units of work done to date | |(11,150 |( 9,750 | |Cost per equivalent unit | |$ 1. 22 |$ 2. 6 | |(Step 4) Total costs to account for |$42,463 | | | |(Step 5) Assignment of costs | | | | |Good units completed and transferred out (9,000 units) | | | | |Costs before adding normal spoilage |$37,620 | (9,000# ( $1. 22) + (9,000# ( $2. 96) | |Normal spoilage (100 units) |418 |(100# ( $1. 22) + (100# ( $2. 96) | |(A) Total cost of good units completed & transf. out |38,038 | | |(B) Abnormal spoil age (50 units) |209 |(50# ( $1. 22) + (50# ( $2. 96) | |(C) Work in process, ending (2,000 units) |4,216 |(2,000# ( $1. 22) + (600# ( $2. 6) | |(A)+(B)+(C) Total costs accounted for |$42,463 | | #Equivalent units of direct materials and conversion costs calculated in Step 2 in Solution Exhibit 18-17. 18-19(15 min. )FIFO method, spoilage, equivalent units. Solution Exhibit 18-19 calculates equivalent units of work done in the current period for direct materials and conversion costs. SOLUTION EXHIBIT 18-19 Summarize Output in Physical Units and Compute Output in Equivalent Units; First-in, First-out (FIFO) Method of Process Costing with Spoilage, Gray Manufacturing Company for November 2006. | |(Step 2) | | |(Step 1) |Equivalent Units | | |Physical |Direct |Conversion | |Flow of Production |Units |Materials |Costs | |Work in process, beginning (given) |1,000 | | | |Started during current period |10,150a | | | |To account for |11,150 | | | |Good units completed and transferred out duri ng current period: | | | | |From beginning work in process|| |1,000 | | | |1,000 ( (100% (100%); 1,000 ( (100% ( 50%) | |0 |500 | |Started and completed |8,000# | | | |8,000 ( 100%; 8,000 ( 100% | |8,000 |8,000 | |Normal spoilage* |100 | | | |100 ( 100%; 100 ( 100% | |100 |100 | |Abnormal spoilage†  |50 | | | |50 ( 100%; 50 ( 100% | |50 |50 | |Work in process, ending†¡ |2,000 | | | |2,000 ( 100%; 2,000 ( 30% | |2,000 |600 | |Accounted for |11,150 | | | |Work done in current period only | |10,150 |9,250 | a From below, 11,150 total units are accounted for.Therefore, units started during current period must be 11,150 – 1,000 = 10,150. ||Degree of completion in this department: direct materials, 100%; conversion costs, 50%. #9,000 physical units completed and transferred out minus 1,000 physical units completed and transferred out from beginning work-in-process inventory. *Degree of completion of normal spoilage in this department: direct materials, 100%; conversion co sts, 100%. † Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100%; conversion costs, 30%. 18-20(20(25 min. )FIFO method, assigning costs (continuation of 18-19).Solution Exhibit 18-20 calculates the costs per equivalent unit for direct materials and conversion costs, summarizes total costs to account for, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process. SOLUTION EXHIBIT 18-20 Compute Cost per Equivalent Unit Costs, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process; FIFO Method of Process Costing, Gray Manufacturing Company, November 2006. | |Total | | | | Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning (given: $1 ,423 + $1,110) |$ 2,533 | | | |Costs added in current period (given) |39,930 |$12,180 |$27,750 | |Divided by equivalent units of work done in current period | |(10,150 |( 9,250 | |Cost per equivalent unit |______ |$ 1. 0 |$ 3 | |(Step 4) Total costs to account for |$42,463 | | | |(Step 5) Assignment of costs: | | | | |Good units completed and transferred out (9,000 units) | | | | |Work in process, beginning (1,000 units) |$ 2,533 | | |Costs added to beg. work in process in current period |1,500 |(0a ( $1. 0) + (500a ( $3) | |Total from beginning inventory before normal spoilage | | | |Started and completed before normal spoilage (8,000 units) |4,033 | | |Normal spoilage (100 units) |33,600 |(8,000a ( $1. 20) + (8,000a ( $3) | |(A) Total costs of good units completed and transferred out |420 |(100a ( $1. 20) + (100a ( $3) | |(B) Abnormal spoilage (50 units) |38,053 | | |(C) Work in process, ending (2,000 units) |210 |(50a ( $1. 0) + (50a ( $3) | |(A)+(B)+(C) Total costs accounted for |4,200 |(2,000a ( $1. 20) + (60a ( $3) | | |$42,463 | | a Equivalent units of direct materials and conversion costs calculated in Step 2 in Solution Exhibit 18-19. 18-21(30 min. )Weighted-average method, spoilage. 1. Solution Exhibit 18-21A calculates equivalent units of work done in the current period for direct materials and conversion costs. SOLUTION EXHIBIT 18-21A Summarize Output in Physical Units and Compute Output in Equivalent Units; Weighted-Average Method of Process Costing with Spoilage, Appleton Company for August 2006. |(Step 1) |(Step 2) | | | |Equivalent Units | |Flow of Production |Physical Units|Direct |Conversion | | | |Materials |Costs | |Work in process, beginning (given) | 2,000 | | | |Started during current period (given) |10,000 | | | |To account for | 12,000 | | | |Good units completed and tsfd. out during current period: | 9,000 | 9,000 | 9,000 | |Normal spoilagea | 900 | | | | (900 [pic]100%; 900 [pic]100%) | | 900| 900 | |Abnormal spoilageb 300 | | | | (3 00 [pic]100%; 300 [pic]100%) | | 300| 300 | |Work in process, endingc (given) | 1,800 | | | | (1,800 [pic] 100%; 1,800 [pic] 75%) |______ | 1,800 | 1,350 | |Accounted for | 12,000 | | | |Work done to date | | 12,000 | 11,550 | | | | | | | aNormal spoilage is 10% of good units transferred out: 10% ? 9,000 = 900 units. Degree of completion of normal spoilage | | in this department: direct materials, 100%; conversion costs, 100%. | | | |bTotal spoilage = Beg. units + Units started – Good units tsfd. out – Ending units = 2,000 + 10,000 – 9,000 – 1,800 = 1,200; | | Abnormal spoilage = Total spoilage – Normal spoilage = 1,200 – 900 = 300 units. Degree of completion of abnormal spoilage | | in this department: direct materials, 100%; conversion costs, 100%. | | |cDegree of completion in this department: direct materials, 100%; conversion costs, 75%. | | | 2 & 3. Solution Exhibit 18-21B calculates the costs per equivalent unit for direct materials a nd conversion costs, summarizes total costs to account for, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process, using the weighted-average method. SOLUTION EXHIBIT 18-21B Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process; Weighted-Average Method of Process Costing, Appleton Company, August 2006.    |   |Total |Direct |Conversion | | | |Production |Materials |Costs | | | |Costs | | | |(Step 3) |Work in process, beginning (given) |$ 28,600 | $17,700 |$ 10,900 | | |Costs added in current period (given) | 174,300 | 81,300 | 93,000 | | |Costs incurred to date | | $99,000 |$103,900 | | |Divide by equivalent units of work done to date | |[pic]12,000 |[pic]11,550 | | |Cost per equivalent unit | _______ | $ 8. 250 |$ 8. 957 | |(Step 4) |Total costs to account for |$20 2,900 | | | |(Step 5) |Assignment of costs: | | | | | |Good units completed and transferred out (9,000 units) | | | | | | Costs before adding normal spoilage |$155,211 |(9,000d [pic]$8. 25) + (9,000 d | | | | |[pic]$8. 957) | | | Normal spoilage (900 units) | 15,521 |(900d [pic]$8. 25) + (900d [pic]$8. 9957) | |(A) | Total costs of good units completed and transferred out | 170,732 | | | |(B) |Abnormal spoilage (300 units) | 5,174 |(300d [pic] $8. 25) + (300d [pic] $8. 9957) | |(C) |Work in process, ending (1,800 units): | 26,994 |(1,800d [pic]$8. 25) + (1,350d | | | | |[pic]$8. 957) | |(A) + (B) + (C) |Total costs accounted for |$202,900 | | | | | | | | | |dEquivalent units of direct materials and conversion costs calculated in step 2 of Solution Exhibit 18-21A. | 18-22 (30 min. )FIFO method, spoilage. 1. Solution Exhibit 18-22A calculates equivalent units of work done in the current period for direct materials and conversion costs. SOLUTION EXHIBIT 18-22A Summarize Output in Physi cal Units and Compute Output in Equivalent Units; FIFO Method of Process Costing with Spoilage, Appleton Company for August 2006. |(Step 1) |(Step 2) | | | |Equivalent Units | |Flow of Production |Physical Units |Direct |Conversion Costs | | | |Materials | | |Work in process, beginning (given) | 2,000 | | | |Started during current period (given) | 10,000 | | | |To account for | 12,000 | | | |Good units completed and transferred out during current period: | | | | | From beginning work in process a | 2,000 | | | | [2,000 ? (100% – 100%); 2,000 ? 100% – 50%)] | | 0 | 1,000 | | Started and completed | 7,000b | | | | (7,000 ? 100%; 7,000 ? 100%) | | 7,000 | 7,000 | |Normal spoilagec | 900 | | | | (900 ? 100%; 900 ? 100%) | | 900 | 900 | |Abnormal spoilaged | 300 | | | | (300 ? 100%; 300 ? 00%) | | 300 | 300 | |Work in process, endinge (given) | 1,800 | | | | (1,800 ? 100%; 1,800 ? 75%) | | 1,800 | 1,350 | |Accounted for | 12,000 |_____ | | |Work done in current period only | | 10,000 | 10,550 | | | | | | | a Degree of completion in this department: direct materials, 100%; conversion costs, 50%. | b 9,000 physical units completed and transferred out minus 2,000 physical units completed and transferred out from beginning | | work-in-process inventory. | | c Normal spoilage is 10% of good units transferred out: 10% ? 9,000 = 900 units. Degree of completion of normal spoilage in this | | department: direct materials, 100%; conversion costs, 100%. | | d Total spoilage = Beg. units + Units started – Good units tsfd. Out – ending units = 2,000 + 10,000 – 9,000 – 1,800 = 1,200 | | Abnormal spoilage = Actual spoilage – Normal spoilage = 1,200 – 900 = 300 units. Degree of completion of abnormal spoilage in | | in this department: direct materials, 100%; conversion costs, 100%. | e Degree of completion in this department: direct materials, 100%; conversion costs, 75%. | 2 & 3. Solution Exhibit 18-22B calculates the costs per equivalent unit for direct materials and conversion costs, summarizes total costs to account for, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process, using the FIFO method. SOLUTION EXHIBIT 18-22B Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process; FIFO Method of Process Costing, Appleton Company, August 2006.    |   |Total |Direct |Conversion | | | |Production |Materials |Costs | | | |Costs | | | |(Step 3) |Work in process, beginning (given) ($17,700 + $10,900) |$ 28,600 | | | | |Costs added in current period (given) | 174,300 |$ 81,300 | $93,000 | | |Divide by equivalent units of work done in current period | |[pic]10,000 |[pic]10,550 | | |Cost per equivalent unit | | $ 8. 130 | $ 8. 152 | |(Step 4) |Total costs to account for |$202,900 | | | |(Step 5) |Assignment of costs: | | | | | |Good units completed and transferred out (9,000 units) | | | | | | Work in process, beginning (2,000 units) |$ 28,600 | | | | | Costs added to beg. work in process in current period | 8,815 |(0f ? $8. 13) | + (1,000f ? $8. 152) | | | Total from beginning inventory before normal spoilage | 37,415 | | | | | Started and completed before normal spoilage (7,000 units) | 118,616 |(7,000f ? $8. 13) | + (7,000f ? $8. 8152) | | | Normal spoilage (900 units) | 15,521 |(900f ? $8. 13) | + (900f ? $8. 8152) | |(A) | Total costs of good units completed and transferred out | 171,282 | | | |(B) |Abnormal spoilage (300 units) | 5,084 |(300f ? $8. 13) | + (300f ? $8. 8152) | |(C) |Work in process, ending (1,800 units): | 26,534 |(1,800f ? $8. 13) | + (1,350f ? $8. 152) | |(A) + (B) + (C) |Total costs accounted for |$202,900 | | | | | | | | | | | | | | | |fEquivalent units of direct materials and conversion costs calculated in step 2 in Solution Exhibit 18-22A. | 18-2 3 (30 min. ) Standard-costing method, spoilage. 1. Solution Exhibit 18-23A calculates equivalent units of work done in the current period for direct materials and conversion costs. (It is the same as Solution Exhibit 18-22A. ) SOLUTION EXHIBIT 18-23A Summarize Output in Physical Units and Compute Output in Equivalent Units; Standard Costing Method of Process Costing with Spoilage, Appleton Company for August 2006. |(Step 1) |(Step 2) | | | |Equivalent Units | |Flow of Production |Physical Units |Direct |Conversion Costs | | | |Materials | | |Work in process, beginning (given) | 2,000 | | | |Started during current period (given) | 10,000 | | | |To account for | 12,000 | | | |Good units completed and transferred out during current period: | | | | | From beginning work in process a | 2,000 | | | | [2,000 ? (100% – 100%); 2,000 ? 100% – 50%)] | | 0| 1,000 | | Started and completed | 7,000b | | | | (7,000 ? 100%; 7,000 ? 100%) | | 7,000 | 7,000 | |Normal spoilagec | 900 | | | | (900 ? 100%; 900 ? 100%) | | 900 | 900 | |Abnormal spoilaged | 300 | | | | (300 ? 100%; 300 ? 00%) | | 300 | 300 | |Work in process, endinge (given) | 1,800 | | | | (1,800 ? 100%; 1,800 ? 75%) | | 1,800 | 1,350 | |Accounted for | 12,000 | | | |Work done in current period only | | 10,000 | 10,550 | | | | | | | a Degree of completion in this department: direct materials, 100%; conversion costs, 50%. | b 9,000 physical units completed and transferred out minus 2,000 physical units completed and transferred out from beginning | | work-in-process inventory. | | c Normal spoilage is 10% of good units transferred out: 10% ? 9,000 = 900 units. Degree of completion of normal spoilage in this | | department: direct materials, 100%; conversion costs, 100%. | | d Total spoilage = Beg. units + Units started – Good units tsfd. Out – ending units = 2,000 + 10,000 – 9,000 – 1,800 = 1,200 | | Abnormal spoilage = Actual spoilage – Normal spoilage = 1,200 â€⠀œ 900 = 300 units. Degree of completion of abnormal spoilage in | | in this department: direct materials, 100%; conversion costs, 100%. | e Degree of completion in this department: direct materials, 100%; conversion costs, 75%. | 2 & 3. Solution Exhibit 18-23B calculates the costs per equivalent unit for direct materials and conversion costs, summarizes total costs to account for, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process, using standard costing. SOLUTION EXHIBIT 18-23B Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process; Standard Costing Method of Process Costing, Appleton Company, August 2006.    |   |Total |Direct |Conversion | | | |Production |Materials |Costs | | | |Costs | | | |(Step 3) |Standard cost per equivalent unit (given) | $ 17. 50 | $8. 00 | $9. 50 | | |Work in process, beginning (given) | $ 25,500 | (2,000 ? $8. 00) |+ (1,000 ? $9. 50) | | |Costs added in current period at standard prices | 180,225 | (10,000 ? $8. 00) |+ (10,550 ? $9. 0) | |(Step 4) |Total costs to account for |$205,725 | | | |(Step 5) |Assignment of costs at standard costs: | | | | | |Good units completed and transferred out (9,000 units) | | | | | | Work in process, beginning (2,000 units) |$ 25,500 | | | | | Costs added to beg. work in process in current period | 9,500 |(0f ? $8. 00) |+ (1,000f ? $9. 50) | | | Total from beginning inventory before normal spoilage | 35,000 | | | | | Started and completed before normal spoilage (7,000 units) | 122,500 |(7,000f ? $8. 00) |+ (7,000f ? $9. 50) | | | Normal spoilage (900 units) | 15,750 |(900f ? $8. 00) |+ (900f ? $9. 0) | |(A) | Total costs of good units completed and transferred out | 173,250 | | | |(B) |Abnormal spoilage (300 units) | 5,250|(300f ? $8. 00) |+ (300f ? $9. 50) | |(C) |Work in proce ss, ending (1,800 units): | 27,225 |(1,800f ? $8. 00) |+ (1,350f ? $9. 50) | |(A) + (B) + (C) |Total costs accounted for |$205,725 | | | |f Equivalent units of direct materials and conversion costs calculated in step 2 in Solution Exhibit 18-23A. | 18-24(25 min. ) Weighted-average method, spoilage. 1. Solution Exhibit 18-24, Panel A, calculates the equivalent units of work done to date for each cost category in September 2006. 2. & 3.Solution Exhibit 18-24, Panel B, calculates the costs per equivalent unit for each cost category, summarizes total costs to account for, and assigns these costs to units completed (including normal spoilage), to abnormal spoilage, and to units in ending work in process using the weighted-average method. SOLUTION EXHIBIT 18-24 Weighted-Average Method of Process Costing with Spoilage; Superchip, September 2006. PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units | |(Step 1) |(Step 2) | | | |Equivalent Un its | | Physical |Direct |Conversion | |Flow of Production |Units |Materials |Costs | |Work in process, beginning (given) |400 | | | |Started during current period (given) |1,700 | | | |To account for |2,100 | | | |Good units completed and transferred out | | | | |during current period: |1,400 |1,400 |1,400 | |Normal spoilage* |210 | | | |210 ( 100%; 210 ( 100% | |210 |210 | |Abnormal spoilage†  |190 | | | |190 ( 100%; 190 ( 100% | |190 |190 | |Work in process, ending†¡ (given) |300 | | | |300 ( 100%; 300 ( 40% | |300 |120 | |Accounted for |2,100 | | | |Work done to date | |2,100 |1,920 | *Normal spoilage is 15% of good units transferred out: 15% ? 1,400 = 210 units.Degree of completion of normal spoilage in this department: direct materials, 100%; conversion costs, 100%. † Total spoilage = 400 + 1,700 – 1,400 – 300 = 400 units; Abnormal spoilage = Total spoilage ( Normal spoilage = 400 ( 210 = 190 units. Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100%; conversion costs, 40%. SOLUTION EXHIBIT 18-24 PANEL B: Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process |Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning (given) |$ 74,200 |$ 64,000 |$ 10,200 | |Costs added in current period (given) |531,600 |378,000 |153,600 | |Costs incurred to date | |$442,000 |$163,800 | |Divided by equivalent units of work done to date | |( 2,100 |( 1,920 | |Cost per equivalent unit costs of work done to date | |$210. 476 |$85. 125 | |(Step 4) Total costs to account for |$605,800 | | | |(Step 5) Assignment of costs | | | | |Good units completed and transferred out (1,400 units) | | | | |Costs before adding normal spoilage |$414,104 |(1,400#( $210. 476) + (1,400#( $85. 3125) | |Normal spoilage (210 units) |62,116 |(210# ( $210. 476) + (210# ( $85. 125) | |(A) Total cost of good units completed and transferred out | | | |(B) Abnormal spoilage (190 units) |476,220 | | |(C) Work in process, ending (300 units) |56,199 |(190# ( $210. 476) + (190# ( $85. 3125) | |(A)+(B)+(C) Total costs accounted for |73,381 |(300# ( $210. 476) + (120# ( $85. 3125) | | |$605,800 | | # Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A. 8-25 (25 min. ) FIFO method, spoilage. 1. Solution Exhibit 18-25, Panel A, calculates the equivalent units of work done in the current period for each cost category in September 2006. 2. & 3. Solution Exhibit 18-25, Panel B, calculates the costs per equivalent unit for each cost category, summarizes the total Microchip Department costs for September 2006, and assigns these costs to units completed and transferred out (including normal spoilage), to abno rmal spoilage, and to units in ending work in process under the FIFO method. SOLUTION EXHIBIT 18-25 First-in, First-out (FIFO) Method of Process Costing with Spoilage; Superchip, September 2006.PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units | | |(Step 2) | | |(Step 1) |Equivalent Units | | |Physical |Direct |Conversion | |Flow of Production |Units |Materials |Costs | |Work in rocess, beginning (given) |400 | | | |Started during current period (given) |1,700 | | | |To account for |2,100 | | | |Good units completed and transferred out | | | | |during current period: | | | | |From beginning work in process|| |400 | | | |400 ( (100% (100%); 400 ( (100% ( 30%) | |0 |280 | |Started and completed |1,000# | | | |1,000 ( 100%; 1,000 ( 100% | |1,000 |1,000 | |Normal spoilage* |210 | | | |210 ( 100%; 210 ( 100% | |210 |210 | |Abnormal spoilage†  |190 | | | |190 ( 100%; 190 ( 100% | |190 |190 | |Work in process, ending†¡ |300 | | | |300 ( 100%; 300 ( 40% | |300 |120 | |Accounted for |2,100 | | | |Work done in current period only | |1,700 |1,800 | ||Degree of completion in this department: direct materials, 100%; conversion costs, 30%. #1,400 physical units completed and transferred out minus 400 physical units completed and transferred out from beginning work in process inventory. Normal spoilage is 15% of good units transferred out: 15% ( 1,400 = 210 units. Degree of completion of normal spoilage in this department: direct materials, 100%; conversion costs, 100%. † Abnormal spoilage = Actual spoilage ( Normal spoilage = 400 ( 210 = 190 units. Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100%; conversion costs, 40%. SOLUTION EXHIBIT 18-25 PANEL B: Steps 3, 4 and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process |Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning, $64,000 + $70,200 (given) |$ 74,200 | | | |Costs added in current period (given) |531,600 |378,000 |153,600 | |Divided by equivalent units of work done in | | | | |current period | |( 1,700 |( 1,800 | |Cost per equivalent unit | |$222. 353 |$ 85. 33 | |(Step 4) Total costs to account for |$605,800 | | | |(Step 5) Assignment of costs: | | | | |Good units completed and transferred out (1,400 units) | | | | |Work in process, beginning (400 units) |$ 74,200 | | |Costs added beg. work in process in current period |23,893 |(0 § ( $222. 353) + (280 § ( $85. 33) | |Total from beginning inventory before normal spoilage | | | |Started and completed before normal spoilage |98,093 | | |(1,000 units) | | | |Normal spoilage (210 units) |307,686 |(1,000 §($222. 353) + (1,000 §($85. 333) | |(A) Total costs of good units completed and |64,614 |(210 §($222. 353) + (210 §($85. 333) | |transferred out | | | |(B) Abnormal spoilage (190 units) |470,393 | | |(C) Work in process, ending (300 units) |58,461 |(190 §($222. 353) + (190 §($85. 33) | |(A)+(B)+(C) Total costs accounted for |76,946 |(300 §($222. 353) + (120 §( $85. 333) | | |$605,800 | |  §Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A. 18-26 (30 min. ) Standard costing method, spoilage. 1. Solution Exhibit 18-25, Panel A, shows the computation of the equivalent units of work done in September 2006 for direct materials (1,700 units) and conversion costs (1,800 units). (This computation is the same for FIFO and standard-costing. ) 2.The direct materials cost per equivalent unit of beginning work in process and of work done in September 2006 is the standard cost of $210 given in the problem. The conversion cost per equivalent unit of beginning work in process and of work done in Se ptember 2006 is the standard cost of $80 given in the problem. 3. Solution Exhibit 18-26 summarizes the total costs to account for, and assigns these costs to units completed (including normal spoilage), to abnormal spoilage, and to units in ending work in process using the standard costing method. SOLUTION EXHIBIT 18-26 Standard Costing Method of Process Costing with Spoilage; Superchip, September 2006.Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process | |Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Standard costs per equivalent unit (given) |$ 290 | $ 210 | $ 80 | |Work in process, beginning* |93,600 |(400 ( $210) + |(120 ( $80) | |Costs added in current period at standard prices |501,000 |(1,700 ( $210) + |(1,800 ( $80) | |(Step 4) Costs to account for $594,600 | | | |(Step 5) Assignment of cost s at standard costs: | | | | |Good units completed and transferred out | | | | |(1,400 units) | | | | |Work in process, beginning (400 units) |$ 93,600 | | |Costs added beg. ork in process in current period |22,400 |(0 § ( $210) + (280 § ( $80) | |Total from beginning inventory before normal | | | |spoilage |116,000 | | |Started and completed before normal spoilage | | | |(1,000 units) |290,000 |(1,000 § ( $210) + (1,000 § ( $80) | |Normal spoilage (210 units) |60,900 |(210 § ( $210) + (210 § ( $80) | |(A) Total costs of good units completed and | | | |transferred out |466,900 | | |(B) Abnormal spoilage (190 units) |55,100 |(190 § ( $210) + (190 § ( $80) | |(C) Work in process, ending (300 units) |72,600 |(300 § ( $210) + (120 § ( $80) | |(A)+(B)+(C) Total costs accounted for |$594,600 | | *Work in process, beginning has 400 equivalent units (400 physical units (100%) of direct materials and 120 equivalent units (400 physical units ( 30%) of conversion costs.  §Equivalent units of direct materials and conversion costs calculated in Step 2 in Solution Exhibit 18-25, Panel A. 18-27(20–30 min. )Spoilage and job costing. 1. Cash 200 Loss from Abnormal Spoilage1,000 Work-in-Process Control1,200 Loss = ($6. 00 ( 200) – $200 = $1,000 Remaining cases cost = $6. 00 per case.The cost of these cases is unaffected by the loss from abnormal spoilage. 2. a. Cash 400 Work-in-Process Control 400 The cost of the remaining good cases = [($6. 00 ( 2,500) – $400] = $14,600 The unit cost of a good case now becomes $14,600 ( 2,300 = $6. 3478 b. Cash 400 Manufacturing Department Overhead Control800 Work-in-Process Control1,200 The unit cost of a good case remains at $6. 00. c. The unit costs in 2a and 2b are different because in 2a the normal spoilage cost is charged as a cost of the job which has exacting job specifications. In 2b however, normal spoilage is due to the production process, not the particular attributes of this specific job. These costs are, therefore, charged as part of manufacturing overhead and the manufacturing overhead cost of $1 per case already includes a provision for normal spoilage. 3. a. Work-in-Process Control 200 Materials Control, Wages Payable Control, Manufacturing Overhead Allocated 200 The cost of the good cases = [($6. 00 ( 2,500) + $200] = $15,200 The unit cost of a good case is $15,200 ( 2,500 = $6. 08 b. Manufacturing Department Overhead Control 200 Materials Control, Wages Payable Control, Manufacturing Overhead Allocated200 The unit cost of a good case = $6. 00 per case c. The unit costs in 3a and 3b are different because in 3a the normal rework cost is charged as a cost of the job which has exacting job specifications.In 3b however, normal rework is due to the production process, not the particular attributes of this specific job. These costs are, therefore, charged as part of manufacturing overhead and the manufacturing overhead cost of $1 per case already includes a provision for this normal rework. 18-28(15 min. ) Reworked units, costs of rework. 1. The two alternative approaches to account for the materials costs of reworked units are: a. To charge the costs of rework to the current period as a separate expense item as abnormal rework. This approach would highlight to White Goods the costs of the supplier problem. b. To charge the costs of the rework to manufacturing overhead as normal rework. 2.The $50 tumbler cost is the cost of the actual tumblers included in the washing machines. The $44 tumbler units from the new supplier were eventually never used in any washing machine and that supplier is now bankrupt. The units must now be disposed of at zero disposal value. 3. The total costs of rework due to the defective tumbler units include the following: a. the labor and other conversion costs spent on substituting the new tumbler units; b. the costs of any extra negotiations to obtain the replacement tumbler units; c. any higher price the existing suppl ier may have charged to do a rush order for the replacement tumbler units; and d. rdering costs for the replacement tumbler units. 18-29(25 min. )Scrap, job costing. 1. Journal entry to record scrap generated by a specific job and accounted for at the time scrap is sold is: Cash or Accounts Receivable490 Work-in-Process Control490 To recognize asset from sale of scrap. A memo posting is also made to the specific job record. 2. Scrap common to various jobs and accounted for at the time of its sale can be accounted for in two ways: a. Regard scrap sales as a separate line item of revenues (the method generally used when the dollar amount of scrap is immaterial): Cash or Accounts Receivable4,000 Sale of Scrap4,000 To recognize revenue from sale of scrap. b.Regard scrap sales as offsets against manufacturing overhead (the method generally used when the dollar amount of scrap is material): Cash or Accounts Receivable4,000 Manufacturing Department Overhead Control4,000 To record cash rais ed from sale of scrap. 3. Journal entry to record scrap common to various jobs at the time scrap is returned to storeroom: Materials Control4,000 Manufacturing Department Overhead Control4,000 To record value of scrap returned to storeroom. When the scrap is reused as direct material on a subsequent job, the journal entry is: Work-in-Process Control4,000 Materials Control4,000 To record reuse of scrap on a job. Explanations of journal entries are provided here but are not required. 18-30 (30 min. Weighted-average method, spoilage. Solution Exhibit 18-30 calculates the equivalent units of work done to date for each cost category, presents computations of the costs per equivalent unit for each cost category, summarizes total costs to account for, and assigns these costs to units completed (including normal spoilage), to abnormal spoilage, and to units in ending work in process using the weighted-average method. SOLUTION EXHIBIT 18-30 Weighted-Average Method of Process Costing with Spo ilage; Cleaning Department of the Alston Company for May. PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units |(Step 1) |(Step 2) | | | |Equivalent Units | | |Physical Units |Direct |Conversion | |Flow of Production | |Materials |Costs | |Work in process, beginning (given) |1,000 | | | |Started during current period given) |9,000 | | | |To account for |10,000 | | | |Good units completed and transferred out | | | | |during current period: |7,400 |7,400 |7,400 | |Normal spoilage* | | | | |740 ( 100%; 740 ( 100% |740 |740 |740 | |Abnormal spoilage†  | | | | |260 ( 100%; 260 (100% |260 |260 |260 | |Work in process, ending†¡ (given) | | | | |1,600 ( 100%; 1,600 ( 25% |1,600 |1,600 |400 | |Accounted for | | | | |Work done to date |10,000 |10,000 |8,800 | *Normal spoilage is 10% of good units transferred out: 10% ? ,400 = 740 units. Degree of completion of normal spoilage in this department: direct materials, 100%; conversion co sts, 100%. † Total spoilage = 1,000 + 9,000 – 7,400 – 1,600 = 1,000 units; Abnormal spoilage = 1,000 – 740 = 260 units. Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100%; conversion costs, 25%. SOLUTION EXHIBIT 18-30 PANEL B: Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process | Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning (given) |$ 1,800 |$ 1,000 |$ 800 | |Costs added in current period (given) |17,000 |9,000 |8,000 | |Costs incurred to date | |10,000 |8,800 | |Divided by equivalent units of work done to date | |(10,000 |( 8,800 | |Cost per equivalent unit |______ |$ 1 |$ 1 | |(Step 4) Total costs to account for |$18, 800 | | | |(Step 5) Assignment of costs | | | | |Good units completed and transferred out (7,400 units) | | | | |Costs before adding normal spoilage |$14,800 | (7,400# ( $1) + | (7,400# ( $1) | |Normal spoilage (740 units) |1,480 |(740# ( $1) + |(740# ( $1) | |(A) Total costs of good units completed and | | | | |transferred out |16,280 | | | |(B) Abnormal spoilage (260 units) |520 |(260# ( $1) + |(260# ( $1) | |(C) Work in process, ending (1,600 units) |2,000 |(1,600# ( $1) + |(400# ( $1) | |(A)+(B)+(C) Total costs accounted for |$18,800 | | | | | | | | #Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A above. 18-31(25 min. )FIFO method, spoilage.For the Cleaning Department, Solution Exhibit 18-31 calculates the equivalent units of work done in the current period for direct materials and conversion costs, presents the costs per equivalent unit for direct materials and conversion costs, summarizes the total costs for May, and assigns these cost s to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work in process under the FIFO method. SOLUTION EXHIBIT 18-31 First-in, First-out (FIFO) Method of Process Costing with Spoilage; Cleaning Department of the Alston Company for May. PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units | |(Step 2) | | |(Step 1) |Equivalent Units | | |Physical |Direct |Conversion | |Flow of Production |Units |Materials |Costs | |Work in process, beginning (given) |1,000 | | | |Started during current period (given) | 9,000 | | | |To account for 10,000 | | | |Good units completed and transferred out during current period: | | | | | From beginning work in process|| |1,000 | | | | 1,000 ( (100% (100%); 1,000 ( (100% ( 80%) | |0 |200 | | Started and completed |6,400# | | | | 6,400 ( 100%; 6,400 ( 100% | |6,400 |6,400 | |Normal spoilage* |740 | | | | 740 ( 100%; 740% ( 100% | |740 |740 | |Abnorm al spoilage†  |260 | | | | 260 ( 100%; 260 ( 100% | |260 |260 | |Work in process, ending†¡ |1,600 | | | | 1,600 ( 100%; 1,600 ( 25% |______ |1,600 |400 | |Accounted for |10,000 |_____ |_____ | |Work done in current period only | |9,000 |8,000 | || Degree of completion in this department: direct materials, 100%; conversion costs, 80%. #7,400 physical units completed and transferred out minus 1,000 physical units completed and transferred out from beginning work-in-process inventory. Normal spoilage is 10% of good units transferred out: 10% ( 7,400 = 740 units. Degree of completion of normal spoilage in this department: direct materials, 100%; conversion costs, 100%. † Total spoilage = 1,000 + 9,000 – 7,400 – 1,600 = 1,000 units Abnormal spoilage = 1,000 – 740 = 260 units. Degree of completion of abnormal spoilage in this department: direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: direct materials, 100 %; conversion costs, 25%. SOLUTION EXHIBIT 18-31 PANEL B: Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process |Total | | | | |Production |Direct |Conversion | | |Costs |Materials |Costs | |(Step 3) Work in process, beginning (given) |$ 1,800 |$1,000 |$ 800 | |Costs added in current period (given) |17,000 |9,000 |8,000 | |Divided by equivalent units of work done in current period | |(9,000 |(8,000 | |Cost per equivalent unit | |1 |1 | |(Step 4) Total costs to account for |$18,800 | | | |(Step 5) Assignment of costs: | | | | |Good units completed and transferred out (7,400 units) | | | | |Work in process, beginning (1,000 units) |$ 1,800 | | |Costs added to beg. work in process in current period |200 |(0 § ( $1) + (200 § ( $1) | |Total from beginning inventory before normal spoilage |2,000 | | |Started and ompleted before normal spoilage (6,400 units) |12,800 |(6,400 § ( $1) + (6,400 § ( $1) | |Normal spoilage (740 units) |1,480 |(740 § ( $1) + (740 § ( $1) | |(A) Total costs of good units completed and transferred out |16,280 | | |(B) Abnormal spoilage (260 units) |520 |(260 § ( $1) + (260 § ( $1) | |(C) Work in process, ending (1,600 units) |2,000 |(1,600 § ( $1) + (400 § ( $1) | |(A)+(B)+(C) Total costs accounted for |$18,800 | |  §Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A. 18-32 (35 min. Weighted-average method, Milling Department (continuation of 18-30). For the Milling Department, Solution Exhibit 18-32 calculates the equivalent units of work done to date for each cost category, presents computations of the costs per equivalent unit for each cost category, summarizes total costs to account for, and assigns these costs to units completed (including normal spoilage), to abnormal spoilage, and to units in ending work in process using the weighted-a verage method. SOLUTION EXHIBIT 18-32 Weighted-Average Method of Process Costing with Spoilage; Milling Department of the Alston Company for May. PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units |(Step 1) |(Step 2) | | | |Equivalent Units | | |Physical Units |Transferred- |Direct |Conversion | |Flow of Production | |in Costs |Materials |Costs | |Work in process, beginning (given) |3,000 | | | | |Started during current period (given) |7,400 | | | | |To account for |10,400 | | | | |Good units completed and transferred out | | | | | |during current period: |6,000 |6,000 |6,000 |6,000 | |Normal spoilage* |300 | | | | |300 ( 100%; 300 ( 100%; 300 ( 100% | |300 |300 |300 | |Abnormal spoilage†  |100 | | | | |100 ( 100%; 100 (100%, 100 ( 100% | |100 |100 |100 | |Work in process, ending†¡ (given) |4,000 | | | | |4,000 ( 100%; 4,000 ( 0%; 4,000 ( 25% | |4,000 |0 |1,000 | |Accounted for |10,400 | | | | |Work done to date | |10,40 0 |6,400 |7,400 | *Normal spoilage is 5% of good units transferred out: 5% ? 6,000 = 300 units. Degree of completion of normal spoilage in this department: transferred-in costs, 100%; direct materials, 100%; conversion costs, 100%. † Total spoilage = 3,000 + 7,400 – 6,000 – 4,000 = 400 units. Abnormal spoilage = 400 – 300 = 100 units. Degree of completion of abnormal spoilage in this department: transferred-in costs, 100%; direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: transferred-in costs, 100%; direct materials, 0%; conversion costs, 25%. SOLUTION EXHIBIT 18-32PANEL B: Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Completed, to Spoiled Units, and to Units in Ending Work in Process | |Total | | | | | |Production |Transferred-in |Direct |Conversion | | |Costs |costs |Materials |Costs | | | | | | | |(Step 3) Work in process, beg inning (given) |$ 8,900 |$ 6,450 |$ 0 |$2,450 | |Costs added in current period (given) |21,870 |16,280* |640 |4,950 | |Costs incurred to date | |22,730 |640 |7,400 | |Divided by equivalent units of work done to date | |(10,400 |( 6,400 |(7,400 | |Cost per equivalent unit | |$2. 1856 |$ 0. 0 |$ 1 | |(Step 4) Total costs to account for |$30,770 | | | | |(Step 5) Assignment of costs | | | | | |Good units completed and transferred out (6,000 units) | | | | | |Costs before adding normal spoilage |$19,713 |6,000# ( ($2. 1856 + $0. 10 + $1) | |Normal spoilage (300 units) |986 |300# ( ($2. 1856 + $0. 0 + $1) | |(A) Total cost of good units completed and transferred out | | | |(B) Abnormal spoilage (100 units) |20,699 | | |(C) Work in process, ending (4,000 units) |329 |100# ( ($2. 1856 + $0. 10 + $1) | |(A)+(B)+(C) Total costs accounted for |9,742 |(4,000# ( $2. 1856)+(0# ( $0. 10)+(1,000# ( $1) | | |$30,770 | | *Total costs of good units completed and transferred out in Step 5 Panel B of S olution Exhibit 18-30. #Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A above. 18-33(25 min. )FIFO method, Milling Department (continuation of 18-31).Solution Exhibit 18-33 shows the equivalent units of work done in the Milling Department in the current period for transferred-in costs, direct materials, and conversion costs, presents the costs per equivalent unit for transferred-in costs, direct materials, and conversion costs, summarizes the total Milling Department costs for May, and assigns these costs to units completed and transferred out (including normal spoilage), to abnormal spoilage, and to units in ending work-in-process under the FIFO method. SOLUTION EXHIBIT 18-33 First-in, First-out (FIFO) Method of Process Costing with Spoilage; Milling Department of the Alston Company for May.PANEL A: Steps 1 and 2—Summarize Output in Physical Units and Compute Output in Equivalent Units | | |(Step 2) | | |(Step 1) |Equivalent Units | | |Physical |Transferred- |Direct |Conversion | |Flow of Production |Units |in Costs |Materials |Costs | |Work in process, beginning (given) |3,000 | | | | |Started during current period (given) |7,400 | | | | |To account for |10,400 | | | | |Good units completed and transferred out during | | | | | |current period: | | | | | |From beginning work in process|| |3,000 | | | | |3,000 ( (100% ( 100%); 3,000 ( | | | | | |(100% ( 0%); 3,000 ( (100% ( 80%) | |0 |3,000 |600 | |Started and completed |3,000# | | | | |3,000 ( 100%; 3,000 ( 100%; 3,000 ( 100% | |3,000 |3,000 |3,000 | |Normal spoilage* |300 | | | | |300 ( 100%; 300% ( 100%; 300 ( 100% | |300 |300 |300 | |Abnormal spoilage†  100 | | | | |100 ( 100%; 100 ( 100%; 100 ( 100% | |100 |100 |100 | |Work in process, ending†¡ |4,000 | | | | |4,000 ( 100%; 4,000 ( 0%; 4,000 ( 25% | |4,000 |0 |1,000 | |Accounted for |10,400 | | | | |Work done in current period only | |7,400 |6,400 |5,000 | ||Degree of completion in this department : transferred-in costs, 100%; direct materials, 0%; conversion costs, 80%. 6,000 physical units completed and transferred out minus 3,000 physical units completed and transferred out from beginning work-in-process inventory. *Normal spoilage is 5% of good units transferred out: 5% ( 6,000 = 300 units. Degree of completion of normal spoilage in this department: transferred-in costs, 100%; direct materials, 100%; conversion costs, 100%. † Total spoilage = 3,000 + 7,400 – 6,000 – 4,000 = 400 units. Abnormal spoilage = 400 – 300 = 100 units. Degree of completion of abnormal spoilage in this department: transferred-in costs, 100%; direct materials, 100%; conversion costs, 100%. †¡Degree of completion in this department: transferred-in costs, 100%; direct materials, 0%; conversion costs, 25%. SOLUTION EXHIBIT 18-33PANEL B: Steps 3, 4, and 5—Compute Cost per Equivalent Unit, Summarize Total Costs to Account For, and Assign Total Costs to Units Complete d, to Spoiled Units, and to Units in Ending Work in Process | |Total | | | | | |Production |Transferred- |Direct |Conversion | | |Costs |in Costs |Materials |Costs | |(Step 3) Work in process, begin. given) | | | | | |($6,450 + $0 + $2,450) |$ 8,900 | | | | |Costs added in current period (given) |21,870 |16,280* |640 |4,950 | |Divided by equivalent units of work done in | | | | | |current period | |( 7,400 |( 6,400 |( 5,000 | |Cost per equivalent unit | |$ 2. 20 |$ 0. 10 |$ 0. 9 | |(Step 4) Total costs to account for |$30,770 | | | | |(Step 5) Assignment of costs: | | | | | |Good units completed and transferred out (6,000 units) | | | | | |Work in process, beginning (3,000 units) |$ 8,900 | | |Costs added to beg. work in process in | | | |current period |894 |(0 ( $2. 20)+(3,000 §( 0. 10)+( 600 § ( $0. 9) | |Total from beginning inventory before normal spoilage | | | |Started and completed before normal spoilage (3,000 units) |9,794 | | |Normal spoilage (300 units) | | | |(A) To tal costs of good units completed and |9,870 |3,000 § ( ($2. 20 + $0. 10 + $0. 99) | |transferred out |987 |300 § ( ($2. 20 + $0. 10 + $0. 9) | |(B) Abnormal spoilage (100 units) | | | |(C) Work in process, ending (4,000 units) |20,651 | | |(A)+(B)+(C) Total costs accounted for |329 |100 § ( ($2. 20 + $0. 10 + $0. 99) | | |9,790 |(4,000 §( $2. 20)+( 0 §($0. 10)+(1,000 §($0. 99) | | |$30,770 | | *Total costs of good units completed and transferred out in Step 5 Panel B of Solution Exhibit 18-31.  §Equivalent units of direct materials and conversion costs calculated in Step 2 in Panel A. 18-34 (20(25 min. ) Job-costing spoilage and scrap. 1. a.Materials Control 600 Manufacturing Department Overhead Control800 Work-in-Process Control1,400 (650 + 500 + 250 = 1,400) b. Accounts Receivable1,250 Work-in-Process Control1,250 2. a. The clause does not specify whether the 1% calculation is to be based on the input cost ($26,951 + $15,076 + $7,538) or the cost of the good output before the â€Å"1% normal spoilage† is added. b. If the inputs are used to determine the 1%: $26,951 + $15,076 + $7,538 = $49,565 1% of $49,565 = $495. 65 or $496, rounded. Then, the entry to leave the $496 â€Å"normal spoilage† cost on the job, remove the salvageable material, and charge manufacturing overhead would be: Materials Control 600Manufacturing Department Overhead Control304 Work-in-Process Control 904 ($800 spoilage minus $496 = $304 spoilage cost that is taken out of the job; $600 salvage value plus $304 = $904; or $1,400 minus $496 = $904) If the outputs are used to determine the 1%: $26,951 – $650 = $26,301 15,076 – 500 =14,576 7,538 – 250 = 7,288 $49,565$48,165 Then, $48,165 ( 1% = $481. 65 or $482, rounded. The journal entry would be: Materials Control 600 Manufacturing Department Overhead Control318 Work-in-Process Control918 18-35(30 min. ) Job costing, rework. 1. Work-in-Process Control (SM-5 motors) ($550 ( 80)44,000 Material s Control ($300 ( 80)24,000 Wages Payable ($60 ( 80)4,800Manufacturing Overhead Allocated ($190 ( 80)15,200 Total costs assigned to 80 spoiled units of SM-5 Motors before considering rework costs. Manufacturing Department Overhead Control (rework)9,000 Materials Control ($60 ( 50)3,000 Wages Payable ($45 ( 50)2,250 Manufacturing Overhead Allocated ($75 ( 50)3,750 Normal rework on 50 units, but not attributable specifically to the SM-5 motor batches or jobs. Loss from Abnormal Rework ($180 ( 30)5,400 Materials Control ($60 ( 30)1,800 Wages Payable ($45 ( 30)1,350 Manufacturing Overhead Allocated ($75 ( 30)2,250 Total costs of abnormal rework on 30 units (Abnormal rework = Actual rework – Normal rework = 80 – 50 = 30 units) of SM-5 Motors. Work-in-Process Control (SM-5 motors)6,000 Work-in-Process Control (RW-8 motors)3,000Manufacturing Department Overhead Allocated (rework)9,000 (Allocating manufacturing department rework costs to SM-5 and RW-8 in the proportion 1,000:5 00 since each motor requires the same number of machine-hours. ) 2. Total rework costs for SM-5 motors in February 2004 are as follows: Normal rework costs allocated to SM-5$ 6,000 Abnormal rework costs for SM-5 5,400 Total rework costs$11,400 We emphasize two points: a. Only $6,000 of the normal rework costs are allocated to SM-5 even though the normal rework costs of the 50 SM-5 motors reworked equal $9,000. The reason is that the normal rework costs are not specifically attributable to SM-5.For example, the machines happened to malfunction when SM-5 was being made, but the rework was not caused by the specific requirements of SM-5. If it were, then all $9,000 would be charged to SM-5. b. Abnormal rework costs of $5,400 are linked to SM-5 in the management control system even though for financial reporting purposes the abnormal rework costs are written off to the income statement. 18-36(30 min. )Job costing, scrap. 1. Materials Control10,000 Manufacturing Overhead Control10,000 (T o record scrap common to all jobs at the time it is returned to the storeroom) 2. Cash or Accounts Receivable10,000 Materials Control10,000 (To record sale of scrap from the storeroom) 3. A summary of the manufacturing costs for HM3 and JB4 before considering the value of scrap are as follows: |HM3 |JB4 |Total Costs | |Direct materials |$200,000 |$150,000 |$350,000 | |Direct manufacturing labor |60,000 |40,000 |100,000 | |Manufacturing overhead | | | | |(200% of direct manufacturing labor) |120,000 |80,000 |200,000 | |Total manufacturing costs |$380,000 |$270,000 |$650,000 | |Manufacturing cost per unit |$19 |$27 | | |($380,000[pic]20,000; $270,000[pic]10,000) | | | | The value of scrap of $10,000 generated during March will reduce manufacturing overhead costs by $10,000 from $200,000 to $190,000. Manufacturing overhead will then be allocated at 190% of direct manufacturing labor costs ($190,000 ? $100,000 = 190%) The revised manufacturing cost per unit would then be: |HM3 |JB4 |Tot al Costs | |Direct materials |$200,000 |$150,000 |$350,000 | |Direct manufacturing labor |60,000 |40,000 |100,000 | |Manufacturing overhead | | | | |(190% of direct manufacturing labor) |114,000 |76,000 |190,000 | |Total manufacturing costs |$374,000 |$266,000 |$640,000 | |Manufacturing cost per unit | $18. 70 | $26. 60 | | |($374,000[pic]20,000; $266,000[pic]10,000) | | | | 18-37(15(20 min. ) Physical units, inspection at various stages of completion (chapter appendix). |Inspection |Inspection |Inspection | | |at 15% |at 40% |at 100% | |Work in process, beginning (20%)* |14,000 |14,000 |14,000 | |Started during March |120,000 |120,000 |120,000 | |To account for |134,000 |134,000 |134,000 | |Good units completed and transferred out |113,000a |113,000a |113,000a | |Normal spoilage |6,600b |7,440c |6,780d | |Abnormal spoilage (10,000 – normal spoilage) |3,400 |2,560 |3,220 | |Work in process, ending (70%)* |11,000 |11,000 |11,000 | |Accounted for |134,000 |134,000 |134,000 | *D egree of completion for conversion costs of the forging process at the dates of the work-in-process inventories a14,000 beginning inventory +120,000 –10,000 spoiled – 11,000 ending inventory = 113,000 b6% ( (113,000 – 14,000 + 11,000) = 6% ( 110,000 = 6,600 c6% ( (113,000 + 11,000 ) = 6% ( 124,000 = 7,440 d6% ( 113,000 = 6,780 18-38(25(35 min. Weighted-average method, inspection at 80% completion (chapter appendix).The computation and allocation of spoilage is the most difficult part of this problem. The units in the ending inventory have passed inspection. Therefore, of the 80,000 units to account for (10,000 beginning + 70,000 started), 10,000 must have been spoiled in June [80,000 – (50,000 completed + 20,000 ending inventory)]. Normal spoilage is 7,000 [0. 10 ( (50,000 + 20,000)]. The 3,000 remainder is abnormal spoilage (10,000 – 7,000). Solution Exhibit 18-38, Panel A, calculates the equivalent units of work done for each cost category. We co mment on several points in this calculation: Ending work in process includes an element of normal spoilage since all the ending WIP have passed the point of inspection––inspection occurs when production is 80% complete, while the units in ending WIP are 95% complete. †¢ Spoilage includes no direct materials units because spoiled units are detected and removed from the finishing activity when inspection occurs at the time production is 80% complete. Direct materials are added only later when production is 90% complete. †¢ Direct materials units are included for ending work in process, which is 95% complete, but not for beginning work in process, which is 25% complete. The reason is that direct materials are added when production is 90% complete. The ending work in process, therefore, contains direct materials units; the beginning work in process does not.

Thursday, January 9, 2020

Ana Code of Ethics Summary Essays - 919 Words

Introduction There are nine provisions included in the ANA code of ethics. The provisions can be broken into three categories. The first category is the nurse’s ethical responsibilities to her patient which is provisions one through three. Second is the nurse’s obligation to herself, provisions four through six. The third ethical requirement for nurses is related to their relationship to the nursing profession, community, nation, and world overall. This focus is summarized in provisions seven through nine [ (American Nurses Association, 2013) ]. Provisions 1-3 The first three provisions relate to the nurse’s responsibility to treat everyone with dignity and respect regardless of that individual’s background, ethnicity, or the†¦show more content†¦Provisions 4-6 The second category of provisions relates to the nurse’s responsibility to maintain their own proficiency and health environments, delegate appropriately, preserve integrity, and keep their practice and competence current. It is crucial that nurses are proficient and maintain competency in order to deliver high quality care to patients. The virtue of professional competence calls for continual professional growth and a commitment to lifelong learning. You must practice nursing that’s evidence-based, be knowledgeable about the scope and standards of nursing practice, and have the necessary skills to perform nursing tasks effectively† [ (Lachman, 2008, p. 44) ]. Integrity is a vital quality as a nurse related to the fact that patients literally entrust their lives to their healthcare team. According to Proverbs 10:9 whoever walks in integrity walks securely, but whoever takes crooked paths will be found out. God is pleased with a person of integrity. I Chronicles 29:17a states I know, my God, that you test the heart and are pleased with integrity. Nurses have the ethical obligation to maintain competence and proficiency, and as Christians, they also are morally bound to develop the virtues of honesty and integrity. Provisions 7-9 The third category highlights the nurse’sShow MoreRelatedNursing Code of Ethics Essay1052 Words   |  5 PagesNursing Code of Ethics Introduction Butts and Rich (1-26) point out that effective nursing requires both broad knowledge and a set of well developed abilities and skills. The required tasks, are many and varied and in order to do them properly, care must be taken to respect each patients rights and sensitivities. This is why, according to the authors, nursing care must be guided by a code of ethics. The purpose of this paper is to provide an overview and discussion of the Code of Ethics forRead MoreThe Anas Code Of Ethics1049 Words   |  5 PagesSummary The American Nurses Association (ANA) has the Code of Ethics which holds Nurses to the codes or provisions of these documents. I summarized Provision 1 of the ANA s Code of Ethics. I give a scenario where this provision is broken by the nursing staff and consequences of doing so. Provision 1: Provision 1 reads as follows â€Å"The nurse, in all professional relationships, practices with compassion and respect for the inherent dignity, worth, and uniqueness of every individual, unrestrictedRead MoreCompassion Fatigue: Traumatic Stress Disorders1302 Words   |  6 PagesIntroduction/Summary Compassion fatigue is the combination of physical, emotional, and spiritual depletion associated with caring for patients in significant emotional pain and physical distress (Anewalt, 2009; Figley, 1995). It is something that can happen to any nurse being overwhelmed in one or more areas of life and/or work. There are multiple ways a nurse can cope with compassion fatigue, and the article gives two great case studies. The first is of the reactive nurse who ultimately runs awayRead MoreCauses And Consequences Of Mandatory Overtime1188 Words   |  5 PagesAmerican Nurses Association and Mandatory Overtime The American Nurses Association (ANA) vigorously contests mandatory overtime. The ANA promotes the Safe Nursing and Patient Care Act, which places a restriction on the amount of overtime hours a nurse can work. Likewise, the ANA has reservations regarding the effect of mandatory overtime on a nurse’s capability to provide competent patient care. Additionally, the ANA (2007) presumes that abolishing mandatory overtime will significantly enrich patientRead MoreProfessional Nursing Organization s Advocacy1397 Words   |  6 Pagesprofessional nursing organization during school and post-graduation. There is an assortment of associations available to the new graduate. The largest professional nursing organization in the US is the American Nurses Association (ANA) (American Nurses Association, 2014). ANA has state chapters that include district branches that offer membership like the Tennessee Nurses Association (TNA) (American Nurses Association). There are also organizations tha t focus on specialties like the American PsychiatricRead MoreThe Influence of Ethical Issues on Information Technology Usage1165 Words   |  5 Pagesethical principles of beneficence, fidelity, nonmaleficence, autonomy, justice and veracity. These principles along with other provisions set a standard for nursing care. Nonmaleficence is the avoidance of harm or hurt; core of medical oath and nursing ethics (nursingworld.org, 2013). This is a nurse’s primary obligation. In nursing informatics, nonmaleficence should be a main commitment. It is the reason privacy settings are set on computers;  only authorized health care professionals are allowed to viewRead MoreWe Can, But Dare We?. Vu H. Chau. Chamberlain College Of1481 Words   |  6 PagesAccountability Act (HIPAA), medical ethics, and legal obligations that may jeopardize oneself and one’s institution. Tying in the technological advances aspects, additional factors in relation to healthcare and personal devices will also be a major focus as well as object of debate for years to come. HIPAA, Legal, and Ethical The HIPAA, ethical, and legal concerns on the rubric provided scenario are all concerning the privacy of and safety concerns of the patient in question. In summary, the scenario paints aRead MoreDelegation Of State Boards Of Nursing1377 Words   |  6 Pagesâ€Å"unlicensed assistive personnel† refers to those health care workers who are not licensed to perform nursing tasks; it also refers to those health care workers who may be trained and certified, but are not licensed. As per the American Nurse Association (ANA) the tasks which may be assigned to UAP are health-related activities do not require nursing skill or judgment and produce predictable results; like: activities of daily living (feeding, drinking, ambulating, turning, grooming, toileting, dressing);Read MoreNursing Profession And The Quality Of Care963 Words   |  4 Pagesstates that a transpersonal relationship between a patient and nurse leads to the development of trusting, accepting relationships in which f eelings are shared freely and confidence is inspired. However, a nurse must always keep in mind that their ethics should never cross the professional boundary. Killeen Saewert (2007) explain that a key component in preserving trust is accountability. Nurses are responsible for their behavior and accountable for any unethical acts. Beliefs and Values ARead MoreThe Requirements For Provider Participation1536 Words   |  7 PagesPAS. The APRN should be qualified and prepared to assist the patient with additional psychiatric care and or ability to provide the patient with resources for their needs. The APRN must identify their moral and ethical role, as the ANA has listed in the code of ethics, which RN’s are not permitted to assist in the concept of PAS (American Nurses Association, 2013). This leads the basis for further research and identification of future needs for OK HB 1673, to provide the listing or abilities of APRN’s

Wednesday, January 1, 2020

Underage Drinking - 1369 Words

Underage Drinking Introduction Underage drinking has long been, and continues to be, a serious public health concern. â€Å"Teen alcohol use kills more than 4700 people each year and high school students who use alcohol or other drugs are five times more likely to drop out of school† (MADD, 2014) than kids who do not. There have been years of underage drinking prevention programs to curtail the use of alcohol by those under 21 years of age and yet alcohol is the most widely used drug by adolescents in the United States (Wagoner et al. 2012). Underage drinking is a real problem in all 50 states, even though there are laws in place to prohibit anyone under 21 years of age from drinking alcohol. Parental involvement might be the†¦show more content†¦2012). Because of the growing issue of parents supplying alcohol to minors, 35 of 50 states currently have Social Host laws in effect. This means if an adult is supplying minors with alcohol in their home, they can be arrested and charge d. These laws are an attempt to decrease the number of adults hosting underage parties and supplying alcohol to minors (Wagoner et al. 2012). In addition to social host laws, laws concerning restricted licenses for teens and limiting teen driving at night seem to have had an impact on underage drinking. Additionally, license suspension laws for alcohol violations are making kids think twice before they consume alcohol and drive (Hingson, 2014). Yet underage drinking remains a nationwide concern and must continue to be addressed. Methodology This study will use cluster sampling to get a good base of individuals and not just those from one area of a city or country. We will use five regions, Northeast, Southeast, Midwest, Northwest and Southwest. We will contract with 30 parents in each region (150 total) who have children ages nine to nineteen, and are willing to actively participate in a longitudinal study. The purpose of the study will be explained to everyone in a question and answer meeting. Those whoShow MoreRelatedUnderage drinking1086 Words   |  5 Pages Underage Drinking It is five o clock on a Friday night and classes are over for the weekend. The options for this evening are the kegger down the street, drinking at the bonfire, or sneaking into a bar with a fake ID. This can be a normal weekend for an underage drinker. Underage alcohol consumption can be very common in the weekly routine for many students. There are many different types of drinkers and reasons for their drinking habits. Some people may drink for social reasons and othersRead MoreUnderage Drinking851 Words   |  4 PagesUnderage drinking is becoming more of a noticeable problem in society, not only with high school students, but also with younger generations. Drinking is all over the television, the radio, and talked about in schools, public places, etc. Alcohol advertisements are more and more appealing to younger generations. If our youth is educated at a younger age, if school policies were stricter, and if clubs and bars cracked down on underage drinking the problem would n ot be as serious. Youth should beRead MoreThe Effects Of Drinking On Underage Drinking3458 Words   |  14 PagesEffects Drinking has on Underaged Drinkers Underage drinking is the most abused substance in the U.S, and accounts for over 4,300 deaths yearly. Drinking, is not only unhealthy but even worse for developing teens. The human brain doesn’t stop developing until 25. It impairs judgment, causes brain damage, and most importantly lifestyles. Nineteen percent of underage people 16 to 20 got in the car with intoxicated drivers. This caused $68 billion dollars in medical bills. When an underage drinkerRead MoreUnderage Drinking And Teenage Drinking1584 Words   |  7 PagesAlex Wilmore Joshua James, Instructor ENG 111 07 July 2015 Underage Drinking â€Å"With such compelling information, the question is why haven t we been able to do more to prevent the crisis of underage drinking? The answer is: rising the age to 25† is what Lucille Roybal-Allard once said, a U.S. Representative for serving in Congress since 1993. This statement has brought many to speculate of issues and debates. This expression opened the eyes of American people that often struggled to make this truthRead MoreUnderage Drinking And Teenage Drinking1584 Words   |  7 PagesAlex Wilmore Joshua James, Instructor ENG 111 07 July 2015 Underage Drinking â€Å"With such compelling information, the question is why haven t we been able to do more to prevent the crisis of underage drinking? The answer is: rising the age to 25† is what Lucille Roybal-Allard once said, a U.S. Representative for serving in Congress since 1993. This statement has brought many to speculate of issues and debates. This expression opened the eyes of American people that often struggled to make this truthRead More Underage Drinking Essay644 Words   |  3 Pagesor be in an accident. But many lives are taken away because of underage drinking. These people are killed in an instant, squashed like bugs on a windshield. They never get to grow up and fulfill their dreams. They become that bum on the street, staggering around and yelling obscene comments. They are like the stray dog that never really finds a place in life. So what is the solution to this problem? Stop the underage drinking. Americans today need to wait until they are mature enough toRead MoreThe Dangers of Underage Drinking775 Words   |  4 Pagesand would not have the responsibility to drink. If teens drink a certain amount of alcohol it could be lethal by alcohol poisoning. â€Å"Alcohol can enter the blood stream; binge drinkers can ingest a fatal dose of alcohol before passing out.† (â€Å"Binge Drinking Can Be Fatal†). The legal minimum age should not be lowered, teens under 21 don’t have the responsibility to get intoxicated and those include car accidents, homicides, suicides, and other injuries. I’m going to tell you why minors should not drinkRead MoreUnderage Drinking in Australia683 Words   |  3 PagesUnderage drinking is rapidly becoming a widespread matter within Australia. It is considered to be a serious problem not only nationally, but also globally wide. Underage drinking has climbed its way up the ladder to one of the most common forms of substance use. â€Å"The health risks that accumulate over a lifetime from alcohol increase progressively – this means that the more young people drink, the greater the risk† (Windle, Spear, Fuligni, Angold, Drown, Pine, Smith, Giedd, Dahl 2009). Some statesRead MoreThe Consequences Of Underage Drinking1745 Words   |  7 PagesConsequences of Underage Drinking While alcohol may not be the most dangerous of drugs, it is harmful nonetheless. There have been many research studies done by the National Institute of Alcohol Abuse and Alcoholism that prove this to be true. Binge drinking is drinking with the purpose of getting drunk, and is the most common form of alcohol consumption while it is also the most dangerous. There have been numerous researches by other organizations and scientists that have demonstrated just how dangerousRead MoreUnderage Drinking Essays1216 Words   |  5 Pageswho is under the legal alcohol drinking age. Fewer situations are more life threatening than when an underage driver has been illegally consuming alcohol, yet persists in the belief that he or she retains the ability to drive safely. Thoughts along this line are foolish at best and deadly at worst. Unfortunately the worst case scenario is all to often a common occurance among intoxicated teenage drivers. Obataining a complete grasp of the effects of underage drinking and driving require not only simple